
 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 1/9 

 
 

 
 

Embedded Human Computation for Knowledge  
Extraction and Evaluation (uComp) 

 
 
 

D3.4: Distributed Knowledge Processing Framework   
 

31 July 2014 
Version: 1.0 

 
 
 
Version History 
 

Version Date Author Comments 
0.1 02/05/2014 A. Scharl Initial Draft Document
0.2 11/05/2014 A. Scharl Major Revision
0.3 15/05/2014 G. Wohlgenannt Ontology Learning Section
0.4 24/07/2014 K. Bontcheva Text Processing Section; Major Revision 
1.0 31/07/2014 A. Scharl Final Revision and Document Layout 
 
 
 
 
 
 
 
Dissemination Level:  PU – Public 
 
uComp receives the funding support of EPSRC EP/K017896/1, FWF 1097-N23, and 
ANR-12-CHRI-0003-03, in the framework of the CHIST-ERA ERA-NET program line. 
  



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 2/9 

 

Table of Contents	
	
Overview ..................................................................................................................... 3 

Multilingual Data Acquisition .................................................................................... 4 

Unstructured Data ................................................................................................ 4 
Structured Data .................................................................................................... 5 

Search and Indexing Strategy ................................................................................. 5 
Text Processing ....................................................................................................... 6 
Ontology Learning ................................................................................................... 8 

Caching ................................................................................................................ 8 

Summary ..................................................................................................................... 9 
References .................................................................................................................. 9 

 
 
 

 
  



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 3/9 

 
Overview 

The uComp project builds scalable, data--driven knowledge discovery and analytics 
applications that rely on flexible, fault-tolerant and iterative system architectures. A 
typical approach for such “big data” applications is to integrate the MapReduce im-
plementation of the Hadoop Framework, and using a cloud computing layer to dis-
tribute computationally expensive processes. Despite the applicability of the batch-
oriented MapReduce model for a wide range of problems, however, it should not be 
considered the silver bullet in every situation. After reviewing the initial plan of using 
Hadoop on top of a private cloud computing infrastructure in light of the specific re-
quirements of the project, the consortium decided to adopt a more flexible approach 
to achieve the required level of scalability in the uComp processing pipeline.  

A modular, container-based architecture that uses a combination of relational and 
NoSQL databases in conjunction with sharded indexing is ideally suited to process 
data streams (in contrast to batch-oriented Hadoop implementations), and to orches-
trate a portfolio of services for the uComp analytic and knowledge processing tools - 
including text mining, knowledge extraction, pattern discovery, and advanced search. 

The structure of this deliverable follows the resource-intensive elements of the 
uComp processing pipeline - including multilingual data acquisition, analytical and 
knowledge processing tools including ontology learning, and information retrieval. 

 
Figure 1. Overview of the uComp System Architecture 



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 4/9 

Multilingual Data Acquisition 

Unstructured Data 

A more dynamic crawling architecture deployed within WP1 based on scrapy1 has 
replaced the previously used HTTrack.2 The new architecture offers improved meta 
data handling (e.g., when gathering social media content via OpenGraph), superior 
caching control, and is better suited for deployment in distributed scenarios. 

A new configuration interface streamlines the setup of all sources, and the workflow 
on how to process them. This includes the configuration of the input filter, the specifi-
cation of different mirroring intervals for crawled resources and RSS feeds, and the 
access parameters for social media APIs - the incoming data stream is first buffered 
using the MongoDB NoSQL database management system,3 and later stored in a 
relational PostgreSQL database.4  

Building on work done in T1.2 and providing the content feeds for T1.5, the resulting 
architecture shown in Figure 2 has been designed to be scalable and straightforward 
to extend. Processing resources in the form of virtual machines can be added on the 
fly. Tasks are being distributed by Celery5 and added to RabbitMQ6, from which the 
workers get pending tasks and process them. 

 

Figure 2. RabbitMQ Task Management 

                                                 
1 www.scrapy.org 
2 www.httrack.com 
3 www.mongodb.org 
4 www.postgresql.org 
5 www.celeryproject.org 
6 www.rabbitmq.com 



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 5/9 

Structured Data 
 
The WP2 repository includes data collected and pre-processed from various struc-
tured sources including 170 million triples from DBpedia.org, 155 million triples from 
Geonames.org, and 337 million triples from Freebase.com (see Deliverable 1.3).  
Additional indicators were acquired from WorldBank7 and Eurostat.8 The harvested 
data contains named entities (people, organisations, locations, dates, events, works - 
especially from DBpedia, Geonames, Freebase), and statistical indicators (especially 
from the World Bank and Eurostat). We compiled Geonames using a Python script. 
For statistical data, we have collected only the indicators that were needed for the 
climate change use case. We have used Python scripts to perform ontology align-
ment and index the datasets – see section “Search and Indexing Strategy” below, 
which ensures that statistical data is available for visualizations as well. 

For the named entity recognition system, we created special repositories dedicated 
to a single type of entity - people from DBpedia or locations from Geonames, for ex-
ample. RDFSlice (Marx et al. 2013)9 was used for slicing large datasets per entity 
type, because it yields all the triples related to a certain object regardless of its posi-
tion as subject or object in a statement (inverse functional dependency). RDFSlice 
uses SPARQL queries for matching the triples. The repositories were created for 
three different languages: English, German, and French. Each dataset is stored in a 
dedicated repository. The triples stores that host these repositories depend on their 
size - for repositories smaller than 200 million triples, we use Sesame,10 otherwise 
BigData11 or Virtuoso.12  

For generating links between various datasets, Silk (Isele et al. 2013) has been 
adopted with the recommended settings (equality/inequality, Levenshtein distance, 
Jaccard distance, wgs84), in conjunction with SPARQL queries and federation. The 
system usually uses rdfs:labels, abstracts or descriptions for the interlinking process, 
if they are available. 

Search and Indexing Strategy 
 
In the second quarter of 2014, the knowledge repository of the Media Watch on Cli-
mate Change has been migrated to Elasticsearch,13 a distributed search and analyt-
ics engine available under an Apache 2 open source license. It is built on Lucene and 
provides a RESTful API using JSON over HTTP. Built for the cloud, Elasticsearch 
further increases the scalability of uComp core components through multitenancy 
and sharded indexing.  
  

                                                 
7 data.worldbank.org 
8 ec.europa.eu/eurostat 
9 www.aksw.org/Projects/RDFSlice.html 
10 www.rdf4j.org 
11 www.bigdata.com 
12 virtuoso.openlinksw.com 
13 www.elasticsearch.org 



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 6/9 

It radically speeds up accessing the domain-specific content repository (D1.3), there-
by also increasing the throughput of data analysis and annotation methods (D1.2), 
the HC-Based Text Mining Tools (D3.2), and the HC-Based Pattern Discovery Algo-
rithms (D3.3). 

Text Processing 

Scaling up of the text processing components delivered in WP1 and WP3 of uComp 
is supported via GATECloud,14 an open cloud-based platform which enables re-
searchers to deploy, share, and use language processing components and re-
sources, following the data-as-a-service and software-as-a-service paradigms. The 
focus is on multilingual text analysis resources and services, based on the GATE 
open-source infrastructure and compliant with relevant NLP standards.  

GATECloud is effectively an NLP Platform-as-a-Service (PaaS), a type of cloud 
computing service which insulates developers from the low-level issues of utilising 
cloud infrastructures effectively, while providing facilities for efficient development, 
testing, and deployment of software over the Internet, following the SaaS model 
(Dikaiakos et al. 2009). In the context of traditional NLP research and development, 
and pre-dating cloud computing, similar needs were addressed through NLP infra-
structures, such as GATE (Cunningham et al. 2013) and UIMA (Ferrucci and Lally 
2004). These infrastructures accelerated significantly the pace of NLP research, 
through reusable algorithms (e.g. rule-based pattern matching engines, machine 
learning algorithms), free tools for low-level NLP tasks, and support for multiple input 
and output document formats (e.g. XML, PDF, DOC, RDF, JSON). 

The  GATECloud platform can be used to develop NLP applications with little or no 
programming, to index the results for enhanced browsing and search, and to evalu-
ate performance.  

Utilising GATECloud is straightforward, since cloud infrastructural issues are dealt 
with by the platform, completely transparently to the user: load balancing, efficient 
data upload and storage, deployment on the virtual machines, security, and fault tol-
erance. 

The development of text analysis algorithms and pipelines typically follows a certain 
methodological pattern, or life cycle. A central problem is to define the NLP task, 
such that human annotators can perform it with a high level of agreement and to cre-
ate high quality training and evaluation datasets. It is common to use double or triple 
annotation, where several people perform the annotation task independently and we 
then measure their level of agreement (Inter-Annotator Agreement, or IAA) to quanti-
fy and control the quality of this data (Hovy 2010). 

 
  

                                                 
14 cloud.gate.ac.uk  



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 7/9 

 

The GATECloud platform was therefore designed to offer full methodological support 
for all stages of the text analysis development life cycle: 

1. Create an initial prototype of the NLP pipeline, testing on a small document 
collection, using the desktop-based GATE user interface (Cunningham et al. 
2013); 

2. If required, collect a gold-standard corpus for evaluation and/or training, using 
the GATE Crowdsourcing plugin developed in uComp;  

3. Evaluate the performance of the automatic pipeline on the gold standard (ei-
ther locally in the GATE development environment or on the cloud). Return to 
step 1 for further development and evaluation cycles, as needed.  

4. Upload large datasets and deploy NLP pipeline on the GATECloud PaaS;  
5. Run large-scale NLP experiment and download the results as XML or a 

standard linguistic annotation format (Ide and Romary 2004). GATECloud al-
so offers scalable indexing and search over linguistic annotations and docu-
ment content.  

6. Analyse any errors, and if required, iterate again over the earlier steps. 

 

Figure 3. Scalability assessment; ten consecutive requests per client 

Scalability and throughput were evaluated as part of the AnnoMarket project.15  The 
results in Figure 3 (reproduced from AnnoMarket Deliverable 4.5) show that the 
throughput of the system scales linearly with the size of the worker swarm (1 to 4 
workers). The blue columns represent 10 clients, each sending 10 requests, whereas 
the red ones are for 100 clients, each sending 10 requests.  

These results demonstrate that scalability of the NLP pipelines in uComp can be 
achieved successfully through GATECloud deployment, as new worker nodes can be 
added transparently by the platform, if the need arises.  

                                                 
15 www.annomarket.eu 



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 8/9 

Ontology Learning 

We addressed the issue of performance improvements with regard to the ontology 
learning framework in a number of ways. First of all, the deployment of caching strat-
egies to avoid redundant computations and API calls, secondly the implementation of 
an approximation algorithm for the spreading activation method, and finally switching 
to a new database layout. In the remainder of this paragraph, we will discuss these 
three aspects in more detail. 

Caching 

The ontology extension module caches previously computed data to reduce the re-
quired computation time for gathering the input data. The caching mechanism of the 
eWRT16 module is used for the corpus, social and keyword modules. However, 
eWRT is not designed to deal with data that may change over time. A request to the 
cache is done by supplying the eWRT disk-caching module. The caching module 
generates a key from its input and tries to find the corresponding data in the disk-
cache. If a cache miss happens the given function is called with its parameters re-
turning the result to the initial caller. The cache stores the result for future calls. We 
had to adapt the eWRT caching modules with additional parameters, which are the 
month and year for which the ontology will be computed. This supports cache up-
dates in monthly intervals and allows to recompute ontologies using only the data 
that was collected in a specific month. Caching is applied to computationally complex 
processes including the computation of keywords via co-occurrence statistics, calls to 
third-party APIs in the evidence collection phase, and calls to the DBpedia SPARQL 
endpoint. 

Spectral Association 

Spectral association is an approximation technique for spreading activation networks 
(Havasi et al. 2010). Its capability to search associative, neural and semantic net-
works is used heavily in the uComp ontology learning system, as it is the central al-
gorithm to select and position new concepts. Spreading activation is an iterative pro-
cess, which cannot be parallelized. Therefore, it is not possible to speed up spread-
ing activation by applying MapReduce strategies. But as spreading activation is very 
slow for large networks exceeding 20.000 nodes and connections, we had to find a 
way to improve performance.  

Spectral association starts with the transformation of the spreading activation net-
work into a square symmetric matrix C of concepts. The rows and columns of C are 
labeled with the concepts from the network, and the values in the matrix represent 
the relation strength between the concepts. Using matrix operations such es calculat-
ing eigenvalues and eigenvectors, it is possible to generate a matrix operator eC 
which simulates any number of spreading activation rounds. Extensive evaluation 
shows that spectral association can lead to very significant performance gains, in our 
settings up to factor 40 compared to classic spreading activation. 

                                                 
16 www.weblyzard.com/ewrt 



 

D3.4 Distributed Knowledge Processing Framework     Dissemination Level: PU 

 

 
Embedded Human Computation for Knowledge Extraction and Evaluation  Page 9/9 

Database Redesign 

To meet uComp’s requirements of regular ontology learning runs on multiple do-
mains and in multiple language, a redesign of the database to store ontology learning 
results and intermediary data became necessary. 

Summary 

This deliverable summarized the system architecture and distributed knowledge pro-
cessing strategy of the uComp project with a focus on the most resource-intensive 
elements of the its processing pipeline - including data acquisition and analytical ser-
vices to collect, extract and process factual and affective knowledge from multiple 
heterogeneous sources and in multiple languages. 

Instead of following a MapReduce-based approach that is common for many big data 
applications, the project adopted a more flexible, container-based architecture that 
uses a combination of relational and NoSQL databases in conjunction with sharded 
indexing. Such a modular approach is ideally suited to process data streams (in con-
trast to batch-oriented Hadoop implementations), and to orchestrate the uComp port-
folio of analytic and knowledge processing services including text mining, knowledge 
extraction, pattern discovery, and semantic search. 

References 

Cunningham, H., Tablan, V., Roberts, A. and Bontcheva, K. 2013. Getting more out 
of biomedical documents with gate’s full lifecycle open source text analytics. PLoS 
Computational Biology, 9(2):e1002854, 02. 

Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G. Vakali, A.. 2009. Cloud compu-
ting: Distributed Internet computing for IT and scientific research. IEEE Internet 
Computing, 13(5):10–13. 

Ferrucci, D. and Lally, A. 2004. UIMA: An Architectural Approach to Unstructured In-
formation Processing in the Corporate Research Environment. Natural Language 
Engineering, 10(3-4):327–348. 

Havasi, C., Speer, R., Holmgren, J.: Automated color selection using semantic 
knowledge. In: AAAI Fall Symposium Series. Arlington, Texas (2010) 

Hovy, E. 2010. Annotation. In Tutorial Abstracts of the 48th Annual Meeting of the 
Association for Computational Linguistics (ACL-2010). 

Ide, N. and Romary, L.. 2004. Standards for language resources. Natural Language 
Engineering, 10:211–225. 

Isele, R., Jentzsch, A., Bizer, C. 2010. Silk Server - Adding missing Links while con-
suming Linked Data. COLD 2010. 

Marx, E., Shekarpour, S., Auer, S. 2013. Large-Scale RDF Dataset Slicing. ICSC 
2013: 228-235. 


