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Abstract. As the manual construction of ontologies is expensive, many
systems to (semi-)automatically generate ontologies from data have been
built. More recently, such systems typically integrate multiple and het-
erogeneous evidence sources. In this paper, we propose a method to opti-
mize ontology learning frameworks by finding near-optimal input weights
for the individual evidence sources. The optimization process applies a
so-called source impact vector and the Tabu-search heuristic to improve
system accuracy. An evaluation in two domains shows that optimization
provides gains in accuracy of around 10%.
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1 Introduction

Ontologies are a cornerstone of the Semantic Web. As the manual construction
of ontologies is expensive and cumbersome, systems for (semi-automatic) learn-
ing of ontologies have been created, which bootstrap the ontology construction
process using data-driven methods. Naturally, as the task at hand is very com-
plex, automatically generated ontologies are (i) typically lightweight (containing
few axioms), and (ii) contain correct, but also wrong, constituents. Therefore an
obvious goal in ontology learning is improving system accuracy. In contrast to
seminal work on ontology learning, which used a single domain text corpus to
extract facts, more recently there has been some work which uses multiple and
heterogeneous sources (see also next section). Using multiple sources can provide
accuracy gains, as it can better exploit redundancy of facts found in different
sources. Redundancy of evidence in various sources can be seen as a measure of
trust and relevance [5].

In previous work, we studied – in an ontology learning context – how many
sources are necessary to benefit from heterogeneous sources, and how much evi-
dence is sufficient per single source [11]. This research was an important step to
find guidelines on how to configure an ontology learning system regarding the
number of evidence sources, and Wohlgenannt [11] deliberately used the same
input weights for all sources – in order to isolate the effect of using multiple and
heterogeneous (unstructured, semi-structured, and structured) sources.
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In this paper, we build on previous work, and aim to further optimize system
accuracy by using an optimization algorithm (Tabu search [7]) to find the best
combination of input weights for the individual evidence sources.

The research questions are as follows: (i) How well can an ontology learning
system be optimized by adapting source input weights? – especially if quality
of evidence varies between sources. (ii) What is the influence of the number of
sources used in the system on the optimization results? (iii) What other findings
and guidelines can be extracted from the data collected in the optimization runs?

To address the research questions, we did two batches of optimization runs.
The first one was conducted in 2013 with all 32 evidence sources used in our
system, which was not very well tuned at that point. The second set of opti-
mization runs was done in 2015, then with a better tuned system, and a reduced
set of evidence sources (according to our findings in our previous work [11] that
a limited number of sources is sufficient for high accuracy).

The structure of this paper is as follows: Section 2 discusses related work,
and Section 3 provides an overview of the ontology learning system used, and of
the heterogeneous evidence sources. Then we introduce the optimization method
(Section 4), and evaluate the optimization process with different configuration
settings in Section 5. Section 6 concludes the paper.

2 Related Work

There has been a lot of initial effort in building ontology learning systems around
the year 2000. These systems usually process high quality domain text with
statistics- and linguistics-based methods. For example, Text2Onto [3] combines
machine learning approaches with linguistic processing to build so called Prob-
abilistic Ontology Models. These models are independent of a concrete target
language and attach probabilities to learned ontological structures.

Obviously, there are also more recent efforts to build systems to learn ontolo-
gies from text, for example OntoGain [6], which uses a number of algorithms such
as formal concept analyses or association rule mining for unsupervised ontology
construction. Other systems often try to compute a probability for ontological
elements learned, which is used in the selection and integration process. For
example, Abeyruwan et al. [1] suggest a method for unsupervised bottom-up
ontology generation which selects ontological elements by a respective Bayesian
probability. For details and information on other ontology learning systems see
the recent survey publication by Wong et al. [14].

There have been few efforts yet to learn ontologies from heterogeneous evi-
dence sources. Manzano-Macho et al. [5] outline some of the potential benefits
of using heterogeneous evidence sources: the combination of sources leads to
an overlap of the ontological elements suggested, this redundancy can be seen
as a measure of relevance and trustiness for a certain domain. And, obviously,
some methods will add valuable complementary information that other sources
or methods did not detect. In their approach to combine heterogeneous sources
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of evidence, Manzano-Macho et al. [5] aim at building a taxonomy of concepts
with higher accuracy compared to using a single evidence source only.

Another method for the integration of heterogeneous sources has been pro-
posed by Cimiano and Völker [2]. They focus on learning taxonomic relations
between concepts combining multiple methods, and then convert the evidence
found into first order logic features. Standard classifiers are applied to find useful
combinations of evidence sources.

In this paper there is no focus on improving single evidence sources, but
rather on the smart combination of heterogeneous evidence sources. Existing
systems typically use a domain corpus as input, whereas our framework inte-
grates a wider variety of sources, including evidence from APIs available on the
Social Web and a Linked Data source. The sources are heterogeneous regarding a
number of aspects: quality, type, number of evidences, etc. (see also Section 3.1).

We use spreading activation as our main method to integrate evidence.
Spreading activation is a method to search neural and semantic networks, its
suitability for information retrieval tasks has been demonstrated eg. in [4].

3 The Ontology Learning Framework

All experiments presented in the paper are based on an existing ontology learning
system which evolved over the years. This section can only give a quick overview
of the framework, for details on the workings of the system see Wohlgenannt
et al. [12], or Liu et al. [9], who present the original version of the framework.
In a nutshell, the system starts from a (typically small) seed ontology, which
is extended with additional concepts and relations. So the main tasks are the
selection of new concept candidates and the positioning of concepts with regards
to the seed ontology.

We compute new ontologies for the domains in question in regular intervals
(monthly) to trace the evolution of the domains. Figure 1 shows (parts of) the
graphical representation of an example ontology learned in the climate change
domain on data from January 2014. The concept colors indicate the ontology
extension stage, the darker, the earlier the concepts were introduced. Before
explaining the system in more detail, we take a look at the evidence sources
used in the process.

3.1 The Evidence Sources

As the name suggests, the evidence sources provide the data needed to extend
(learn) ontologies. In general, the input to evidence acquisition is a term (typ-
ically the label of a seed concept), and the result is a list of terms related to
the seed term, and optionally significance values. So, for example, the system
sends the seed concept label “CO2” to the Flickr API1, and gets a list of related
terms – which will then be used in the ontology learning process together with
information from all other sources of evidence.
1 www.flickr.com/services/api/flickr.tags.getRelated.html
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Fig. 1. Part of a sample ontology in the domain of climate change after three stages
(levels) of extension

The evidence sources are heterogeneous regarding various aspects, such as (i)
the number of evidences returned; (ii) the average quality (ie. domain relevance)
of terms provided; (iii) the update frequency of the source – some sources are
dynamic, eg. social sources and news media, some rather static, eg. WordNet
and DBpedia; (iv) the availability of a significance score for the terms; and (v)
the type of underlying data (text, structured, etc.).

By default, the ontology learning system currently uses 32 sources of evi-
dence, which are listed in Tables 1 and 2. The first batch of experiments (see
Section 5) conducted in year 2014 is based on all 32 sources, the second batch
(year 2015) is based on the sources marked with boldface fonts. A major fraction
of evidence sources is made up by the 16 sources based on keywords computed
with co-occurrence statics on documents published and mirrored in the respec-
tive period of time, and filtered with a domain-detection service. The system
computes page- and sentence-level keywords for documents collected from: US
news media, UK news media, AU/NZ News Media, Websites of NGOs, Fortune
1000 company Websites, Twitter tweets, Youtube postings, Google+ postings,
and public Facebook pages and postings. Furthermore, we use Hearst patterns [8]
on those corpora, which constitutes further 10 evidence sources. Currently, the
system includes two evidence sources based on calls to APIs of Social Media
sites (Twitter, Flickr). Structured evidence sources contribute the remaining 4
sources of evidence, ie. hypernyms, hyponyms and synonyms from WordNet,
and related terms from DBpedia. For more details on evidence sources used see
Wohlgenannt et al. [13].
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Extraction Method

Data sources
domain text from: Keywords/page Keywords/sentence Hearst patterns

US news media 1 2 3
UK news media 4 5 6
AU/NZ news media 7 8 9
Other news media 10 11 12
Social media – Twitter 13 - 14
Social media – Youtube 15 - 16
Social media – Facebook 17 - 18
Social media – Google+ 19 - 20
NGOs Websites 21 22 23
Fortune 1000 Websites 24 25 26

Table 1. The first 26 evidence sources are based on domain-specific text collected from
the Web.

Method

Data source: hypernyms hyponyms synonyms API SPARQL
WordNet 27 28 29 - -
DBpedia - - - - 30
Twitter - - - 31 -
Flickr - - - 32 -

Table 2. The other 6 sources of evidence, based on WordNet, DBpedia and Social
Media APIs.

3.2 Source Impact

As mentioned, evidence sources are heterogeneous in number and quality of terms
provided, we use a so-called Source Impact Vector (SIV) to manage the influence
of a particular evidence source on the ontology learning process. Equation 1
demonstrates that the SIV consists of one impact value per evidence source
(and point in time). The impact value is in the interval [0.0, 1.0], a value of 1.0
results in high impact in the learning processes, wheres 0.0 in fact omits evidence
suggested by the respective source.

SIVt =
[
Ies1,t Ies2,t · · · Iesn,t

]
(1)

The SIV is used to set the weights in the spreading activation network (see
next subsection for details), which selects new concept candidates for the ontol-
ogy. Initial versions of the system ([9], [10]) applied a manually picked and static
source impact, in this paper we propose novel ideas and experiments to optimize
the ontology learning system via the SIV. The optimization process aims to find
a configuration of the SIV which maximises the ratio of relevant new concept
candidates suggested by the system.
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3.3 The Ontology Learning Process

Having described the evidence sources and the SIV, we can introduce the basic
workflow of the ontology learning system: The ontology learning run starts with
a small seed ontology (in the climate change usecase we use two concepts, namely
climate change and global warming). The system collects evidence for the seed
concepts from the 32 (or 14) evidence sources. After integrating all this evidence
into a semantic network, a transformation process using the SIV converts the
semantic network into a spreading activation network. The spreading activation
algorithm yields new concept candidates. We currently pick the 25 candidates
with the highest level of activation. The concept candidates are evaluated for
domain relevance by domain experts, this is the only part of the system that
involves human intervention. Finally, the system positions new concepts rated as
relevant with regards to the existing ontology. For the next ontology extension
step the framework uses the result from the previous iteration as new seed ontol-
ogy, and further extends it. We typically do three ontology extension iterations.
Figure 2 gives on overview of the workflow.

Fig. 2. The Ontology Learning Framework

The goal of this research (and the optimization) is to improve the ratio of
relevant to non-relevant concept candidates, ie. to improve the output of the
spreading activation algorithm. The SIV is a key factor in this optimization
process, as it determines – in combination with significance scores provided by
the evidence sources – the weights in the spreading activation network.
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4 The Optimization Process

Although a spreading activation network has the fundamental characteristics of
a neural network, we did not find a way to apply classic neural network learning
techniques to optimize the output for a number of reasons:

– The spreading activation network doesn’t have an explicit output layer, the
results of the spreading activation algorithm are the activation levels of nodes
all over the network.

– We select a preset number of nodes (eg. 25) with the highest activation
level as concept candidates. The use of an error function (as used eg. in
backpropagation) is not straightforward, as we only assess the preset number
of nodes with the highest activation, but any other node might be a relevant
domain concept as well. So there is no distinct correct output of the spreading
activation network that could be used.

– The learning algorithm can not freely optimize the weights in the network,
as values of the SIV are only factors in the connection weights. First of all,
when multiple SIV factors make up a connection weight, it is not clear which
specific SIV factor should be changed. And more importantly, if a specific SIV
value is changed for one connection, it needs to be changed simultaneously
everywhere in the spreading activation network wherever used, leading to
unpredictable effects.

The characteristics described above led us to experiment with heuristics to
improve the output of the ontology learning framework based on the modification
of the SIV. This includes a baseline with a static SIV (Section 4.1), and a model
that aims to optimize the SIV (Section 4.2).

Overall, the crucial factor which has an impact on the results of the ontology
learning process are not so much the absolute values in the SIV, but the dif-
ferences between evidence sources. Higher source impact for an evidence source
results in increased activation levels and therefore a higher chance of being a
candidate concept for evidence suggested by the particular source.

4.1 Static Source Impact Values

The simplest way to use the SIV is to have static values for any source, not
changing over time or across domains. We use a source impact of 0.2 for all 32
evidence sources. This uniform source impact has been used in the experiments
regarding the number and balancing of evidence sources presented by Wohlge-
nannt [11], and provides good results, which we use as a baseline and starting
point of the optimization experiments.

4.2 Optimization

With this strategy, instead of having a single static SIV, the system investigates
different SIV settings and their results. In the first batch of experiments, we set
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the source impact for every evidence source to values in the interval [0.0, 1.0]
with a step-size of 0.1, i.e. eleven values per source. With 32 evidence sources,
this leads to an enormous number (1132) of potential permutations. As a sin-
gle ontology learning run (depending on settings) takes around four hours of
computation time, we decided to use the Tabu Search heuristic [7], and simply
optimize every evidence source by itself, with settings for other sources constant.
The leads to 352 (11∗32) ontology learning runs. In the second batch, we used a
step-size of 0.2 and 14 evidence sources, resulting in 84 (6∗14) ontology learning
runs.

The following Pseudocode shows the Tabu Search-based optimization strat-
egy:

Algorithm 1 Optimize SIV with Tabu Search

Initial solution← Static SIV
# do for all 32 evidence sources
for each evidence source e do

# create neighborhood
for X in interval [0.0, 1.0] size 0.1 do

# evaluate every neighbor
SIVe ← X
compute ontology (all 3 extension steps) using SIV
Qx ← Evaluate quality of ontology
Remember result (X,Qx)

end for
# keep value X with best result – skip the rest
SIVe ← pick best result from neighborhood
Put all other solutions from neighborhood on Tabu list

end for

Basically, the heuristic looks for the best source impact value for a single
evidence source, and uses this value when optimizing the other evidence sources.
One of the downsides of this method is that the order in which evidence sources
are processed obviously has an impact on the result. The system randomizes
the order of evidence sources before every optimization run. It will typically not
find a global optimum, but hopefully a good solution with a limited number of
permutations. Furthermore, the optimization helps to visualize and understand
how specific SIV settings contribute to ontology quality.

5 Evaluation

This section summarizes the findings of optimization runs performed to gain
insights about the improvements of accuracy which can be reached by optimizing
the combination (the impact) of evidence sources.
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5.1 Evaluation Setup

In previous experiments conducted in year 2014 (see Section 5.3 for results)
we used a step-size of 0.1 in a source impact interval of 0.0 to 1.0, and 32
evidence sources. For the recent batch of evaluation experiments we used a more
computationally efficient setup, with optimization runs for 14 evidence sources,
and a step-size of 0.2. Previous work shows that 10-15 evidence sources are
sufficient to have good results [11].

Relevance assessment of concept candidates is being done by domain experts.
The accuracy values used in this section are simply the number of concept can-
didates rated as domain-relevant by the domain experts divided by all concept
candidates suggested by the system. We decided to use the ratio of relevant
concepts as evaluation metric because (i) the relevance of domain concepts is
critical to generating useful domain ontologies, and (ii) relevance assessment for
concept candidates is the only part of the system where manual input is applied.

5.2 Recent Optimization Experiments

These experiments were conducted with the latest version of the ontology learn-
ing system in the first half of year 2015. We compared the results of using a
static SIV (uniform source impact of 0.2 for all evidence sources) to optimizing
source impact.

Domain Static SIV Optimized Improvement

Climate Change (en) 67.15% 76.88% 9.73%
Tennis (en) 44.57 54.42% 9.85%

Table 3. System accuracy and gains by optimizing the SIV as compared to a static
SIV, in two different domains.

Table 3 summarizes the results for two different domains, the domains of
climate change and of the sport tennis. The values in the table represent the
average accuracy for ontology generation runs with a static SIV and for the op-
timization processes. The data indicates a substantial improvement in accuracy
of around 10% which can be reached by optimizing the SIV.

The difference in accuracy between the two domains can be attributed to the
following reasons: (i) In the climate change domain we are supplied with much
bigger and domain-specific corpora, whereas with tennis we use general news
corpora which are then filtered for tennis-related documents ex-post. Besides
corpus-size and quality, (ii) the domain of tennis has a lot of overlap with other
sports domains. Concepts such as ball, tournament, etc. attract related but not
domain-relevant terms from other sports, whereas climate change seems to be
more “closed”.

However, the most interesting fact is the improvement in accuracy, which is
statistically significant, as confirmed with a binomial test.
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5.3 Previous Experiments

This section discusses experiments done in early 2014 with an older version of the
system, which wasn’t as well tuned, with lower general accuracy. This is reflected
by the accuracy values for Static SIV in Table 4. We evaluated two settings,
where we used either up to 50 (limit=50 ) evidences per source and concept, or
up to 200 (limit=200 )2 – for details on these settings see Wohlgenannt [11].

Domain Static SIV Optimized Improvement

Climate Change (en) – limit=50 63.33% 78.18% 14.85%
Climate Change (en) – limit=200 64.13% 77.33% 13.20%

Table 4. System accuracy of the previous system version, in the domain of climate
change, for two settings.

In year 2014 we started from a lower baseline (around 63-64%), and experi-
ence improvements from optimization between 13-15%, more than in the recent
batch of experiments. Our interpretation of the results is the following:

– The lower baseline leaves more room for improvement.
– In the 2014 experiments we used a step-size of 0.1, which resulted in higher

computational cost, but also a more fine-tuned optimization.
– The number of evidence sources was much higher (32 sources), therefore the

potential for fine-grained optimization of sources was higher.

With regards to the research questions posed in Section 1, the evaluation
shows that system accuracy can be raised substantially by optimization using
the SIV. It helps to have a high number of evidence sources and also a fine-
grained step-size, this allows for a more precise optimization process.

5.4 Analysis of Evidence Sources

The evidence sources provide terms and relations of different quality to the learn-
ing algorithms. Wohlgenannt [11] discusses the quality and characteristics of ev-
idence sources in some detail. In a nutshell, the number and quality (domain
relevance) of evidence is very heterogeneous. Keyword-based sources typically
provide a high number of terms, with good quality for the terms with highest
co-occurrence significance, but degrading with more terms added having a lower
significance. Terms for structured sources such as DBpedia and WordNet gener-
ally offer good quality, but low term numbers. In our experiments, APIs of social
sources such as Twitter and Flickr yield mostly low quality terms – but we still
have them included to (i) benefit from the effect of redundancy between sources,
and (ii) as they often provide very recent and complementary terminology.

2 The more recent evaluations in Section 5.2 were conducted with limit=50 settings.
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Fig. 3. Influence of Source Impact settings for a number of selected evidence sources.

Figure 3 visualizes the influence of source impact (SI) settings for some indi-
vidual sources on system accuracy. The data is taken from an optimization run
in the domain of climate change, and helps to explain the characteristics and
experiences with SIV optimization. Usually evidence sources fall into one of the
following categories:

– Increasing the SI raises accuracy. These evidence sources obviously yield rel-
evant terms and helpful contributions to the ontology learning system. With
higher impact of the source the accuracy goes up. keywords:page:UK media

and keywords:page:climate ngos in Figure 3 fall into this category.
– Increasing the SI lowers accuracy. This applies to sources which do not con-

tribute much helpful data. For example keywords:sent:Fortune1000.
– Accuracy independent of SI. This usually happens when a source provides a

very low number of evidences, social:Flickr in our example.
– Erratic. As with Hearst:Australian media, sometimes the effects of the SI

are rather erratic. Such cases are the biggest challenge for optimization.
– A mix of the basic categories described above.

Erratic behavior or a mix of the categories described above results from the
fact that the system selects the 25 concept candidates with the highest spreading
activation level. Raising the influence of a single evidence source gives more
importance to all its evidence, relevant or not. The Tabu search heuristic will
not find an optimal, but typically good, combination of sources (ie. the SIV).

6 Conclusions

Ontology learning aims at (semi-)automatically constructing lightweight ontolo-
gies from sources of evidence. When using multiple and heterogeneous sources,
balancing and optimizing the influence of evidence sources is crucial. In this pa-
per, we introduce and evaluate a strategy for optimizing such ontology learning
systems, and see improvements in accuracy (in the concept detection phase) of



12 Gerhard Wohlgenannt, Stefan Belk, and Katharina Rohrer

ca. 10-15%. The contributions are as follows: (i) Presenting a novel method to
configure and optimize ontology learning systems using the source impact vector
and the Tabu-search heuristic, and (ii) experiments in two domains to estimate
the accuracy gains from this optimization technique. Future work includes the
repetition of experiments in other domains, also based on corpora in other lan-
guages, and the application of alternative optimization strategies.
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