The uComp Protégé Plugin:
Crowdsourcing Enabled Ontology Engineering

Florian Hanika', Gerhard Wohlgenannt', and Marta Sabou?

! WU Vienna
{florian.hanika, gerhard.wohlgenannt}@wu.ac.at
2 MODUL University Vienna

marta.sabou@modul.ac.at

Abstract. Crowdsourcing techniques have been shown to provide ef-
fective means for solving a variety of ontology engineering problems.
Yet, they are mainly being used as external means to ontology engi-
neering, without being closely integrated into the work of ontology engi-
neers. In this paper we investigate how to closely integrate crowdsourcing
into ontology engineering practices. Firstly, we show that a set of basic
crowdsourcing tasks are used recurrently to solve a range of ontology
engineering problems. Secondly, we present the uComp Protégé plugin
that facilitates the integration of such typical crowdsourcing tasks into
ontology engineering work from within the Protégé ontology editing en-
vironment. An evaluation of the plugin in a typical ontology engineering
scenario where ontologies are built from automatically learned semantic
structures, shows that its use reduces the working times for the ontol-
ogy engineers 11 times, lowers the overall task costs with 40% to 83%
depending on the crowdsourcing settings used and leads to data quality
comparable with that of tasks performed by ontology engineers.

Keywords: crowdsourcing, ontology engineering, ontology learning,
Protégé plugin.

1 Introduction

Ontology engineering consists of a collection of knowledge acquisition and man-
agement techniques for creating and maintaining ontologies during their entire
life-cycle. Ontology engineering tasks tend to be complex, costly and, above all,
time-consuming processes.

Let’s consider the task of ontology creation. To reduce its complexity, on-
tology construction is often bootstrapped by re-using existing or automatically
derived ontologies. Ontology learning methods, for example, automatically ex-
tract ontologies from (a combination of) unstructured and structured resources.
Although the extracted ontologies already provide a good basis for building the
ontology, they typically contain questionable or wrong ontological elements and
require a phase of verification and redesign (especially pruning) by the ontol-
ogy engineer. The ontology verification phase involves, among others, checking

K. Janowicz et al. (Eds.): EKAW 2014, LNAI 8876, pp. 181-196, 2014.
© Springer International Publishing Switzerland 2014

182 F. Hanika, G. Wohlgenannt, and M. Sabou

that the ontology concepts are relevant to the domain of interest and that the
extracted subsumption relations are correct.

Crowdsourcing methods provide effective means to solve such ontology ver-
ification tasks by outsourcing these to “an undefined, generally large group of
people in the form of an open call” [5]. As detailed in Section 2, crowdsourcing
has been used effectively to solve a range of ontology engineering tasks. How-
ever, crowdsourcing techniques require high upfront investments (understanding
the techniques, creating appropriate tasks) and therefore, despite their proven
usefulness, these techniques remain outside the reach of most ontology engineers.

In this paper we investigate how to more closely embed crowdsourcing into
ontology engineering. In the area of Natural Language Processing (NLP), where
the use of crowdsourcing is highly popular [12], there already exists an effort to-
wards supporting easy integration of crowdsourcing methods into linguists’ work:
the GATE Crowdsourcing Plugin is a new component in the popular GATE NLP
platform that allows inserting crowdsourcing tasks into larger NLP workflows,
from within GATE’s user interface [1]. Noy and colleagues [10] introduce a vision
for similar tool support to facilitate the integration of crowdsourcing into ontol-
ogy engineering. To achieve our goal we seek answer to two research questions:

Which tasks can be crowdsourced? We distill a set of crowdsourcing tasks
that are likely to be common to solving a variety of ontology engineering
problems and which should be implemented by the desired tool support
(Section 2).

How to implement crowdsourcing enabled ontology engineering? We
present a tool, the uComp Protégé plugin, which allows ontology engineers
to crowdsource tasks directly from within the popular ontology engineering
tool and as part of their ontology engineering work (Section 3).

We evaluate some of the functionality of the plugin to estimate the improve-
ments made possible over manually solving a set of tasks in terms of time and
cost reductions, while maintaining good data quality (Section 4). Our findings
show that, in a scenario where automatically extracted ontologies are verified
and pruned, the use of the plugin significantly reduces the time spent by the
ontology engineer (11 times) and leads to important cost reductions (40% to
83% depending on the crowdsourcing settings used) without a loss of quality
with respect to a manual process.

2 Use of Crowdsourcing for Knowledge Acquisition

Crowdsourcing methods are usually classified in three major genres depending
on the motivation of the human contributors (i.e., payment vs. fun vs. altruism).
Mechanised labour (MLab) is a type of paid-for crowdsourcing, where contrib-
utors choose to carry out small tasks (or micro-tasks) and are paid a small
amount of money in return. Popular crowdsourcing marketplaces include Ama-
zon’s Mechanical Turk (MTurk) and CrowdFlower (CF). Games with a purpose
(GWAPs) enable human contributors to carry out computation tasks as a side

Crowdsourcing Enabled Ontology Engineering 183

effect of playing online games [20]. Finally, in altruistic crowdsourcing a task is
carried out by a large number of volunteer contributors. Crowdsourcing methods
have been used to support several knowledge acquisition and, more specifically,
ontology engineering tasks. To provide an overview of these methods we will
group them along the three major stages of the Semantic Life-cycle as identified
by Siorpaes in [17] and sum them up in Table 1.

Stage 1: Build and Maintain Semantic Web Vocabularies. Eckert and
colleagues [4] relied on MTurk micro-workers to build a concept hierarchy in
the philosophy domain. Crowdsourcing complemented the output of an auto-
matic hierarchy learning method in: a) judging the relatedness of concept pairs
and b) specifying the level of generality between two terms (more/less specific
than). Noy and colleagues [10] focused on verifying the correctness of taxo-
nomic relations. As for GWAPs, the OntoPronto game [17] aims to support
the creation and extension of Semantic Web vocabularies. Players are presented
with a Wikipedia page of an entity and they have to (1) judge whether this
entity denotes a concept or an instance; and then (2) relate it to the most spe-
cific concept of the PROTON ontology, therefore extending PROTON with new
classes and instances. Climate Quiz [16] is a Facebook game where players eval-
uate whether two concepts are related (e.g. environmental activism, activism),
and which label is the most appropriate to describe their relation. The possi-
ble relation set contains both generic (is a sub-category of, is identical to, is
the opposite of) and domain-specific (opposes, supports, threatens, influences,
works on/with) relations. Guess What?! [9] goes beyond eliciting or verifying re-
lations between concepts to creating complex concept definitions. Players (1)
assign a class name to a complex class description (e.g., assign Banana to
fruit&yellowdegrows on trees) and (2) verify such class definitions.

Stage 2: Align Semantic Web Vocabularies. The CrowdMap system en-
lists micro-workers to solve the ontology alignment task [15] by asking them
to 1) verify whether a given relation is correct (e.g., “Is conceptA the same as
conceptB? yes/no ”) and 2) specify how two given terms are related, in particu-
lar by choosing between sameAs, isSAKindOf and notRelated. SpotTheLink has
been instantiated to align the eCl@ss and UNSWPC [17] as well as the DBpe-
dia and PROTON ontologies [18]. The final version of the game solves ontology
alignment through two atomic tasks: (1) choosing a related concept — given a
DBpedia concept players choose and agree upon a related PROTON concept;
(2) specifying the type of relation between two concepts.

Stage 3: Annotate Content and Maintain Annotations. In ZenCrowd [3]
crowd-workers verify the output of automatic entity linking algorithms. Con-
cretely, given a named entity, e.g., “Berlin”, and a set of DBpedia URLs gen-
erated automatically, crowd-workers choose all the URLs that represent that
entity or “None of the above” if no URL is suitable. In essence, this is an anno-
tation task. WhoKnows? [21] and RISQ! [23] are GWAPs which rely on similar

184 F. Hanika, G. Wohlgenannt, and M. Sabou

mechanisms: they use LOD facts to generate questions and use the answers to
(1) evaluate property rankings (which property of an instance is the most im-
portant/relevant); (2) detect inconsistencies; and (3) find doubtful facts. While
WhoKnows?! uses a classroom paradigm and aims towards being an educational
game, RISQ! is a Jeopardy-style quiz game.

Table 1. Overview of approaches addressing problems in various stages of the Semantic
Web life-cycle [17], their genres and the type of crowdsourcing tasks that they employ

SW Life-cycle |Approach Genre Solved Task

Stage

Stage 1: Build and|InPho [4] MLab (T3) Specification of Relation Type (subs)
maintain (T1) Specification of Term Relatedness
Semantic Web Noy [10] MLab | (T2) Verification of Relation Correctness (subs)
vocabularies OntoPronto [17] |GWAP Class vs. instance decisions

(T3) Specification of Relation Type (subs/instOf)
Climate Quiz [16]|GWAP| (T3) Specification of Relation Type (8 relations)
Guess What?! [9] [GWAP Verify complex class definitions

Generate class names for complex defs

Stage 2: Align CrowdMap [15] | MLab |(T2) Verification of Relation Correctness (subs/eqv)

Semantic Web (T3) Specification of Relation Type (subs/eqv)
vocabularies SpotTheLink [18] | GWAP (T1) Specification of Term Relatedness
(T3) Specification of Relation Type (subs/eqv)
Stage 3: Annotate |ZenCrowd [3] MLab Text to URL mapping (annotation)
content, maintain [WhoKnows? [21] |GWAP Answering quiz questions
annotations RISQ! [23] GWAP Answering quiz questions

2.1 Typical Crowdsourcing Tasks in Ontology Engineering

Based on the analysis above, we distill a set of recurrent basic crowdsourcing
task types used to solve a variety of ontology engineering problems, as follows.

T1. Specification of Term Relatedness. Crowd-workers judge whether two
terms (typically representing ontology concepts) are related. In some cases
they are presented with pairs of terms [4] while in others they might need
to choose a most related term from a set of given terms [18]. This type of
crowdsourcing task is suitable both in ontology creation [4] and in ontology
alignment scenarios [18].

T2. Verification of Relation Correctness. Presented with a pair of terms
(typically representing ontology concepts) and a relation between these terms,
crowd-workers judge whether the suggested relation holds. Frequently veri-
fied relations include generic ontology relations such as equivalence [15] and
subsumption [10,15], which are relevant both in ontology evaluation [10] and
ontology alignment scenarios [15].

T3. Specification of Relation Type. In these tasks, crowd-workers are pre-
sented with two terms (typically corresponding to ontology concepts) and
choose an appropriate relation from a set of given relations. Most efforts

Crowdsourcing Enabled Ontology Engineering 185

focus on the specification of generic ontology relations such as equivalence
[16,15,18], subsumption [16,4,17,15,18], disjointness [16] or instanceOf [17,16].
The verification of domain-specific named relations such as performed by
Climate Quiz [16] is less frequent.

T4. Verification of Domain Relevance. For this task, the crowdworkers
confirm whether a given term is relevant for a domain of discourse. This
task is mostly needed to support scenarios where ontologies are extracted
using automatic methods, for example, through ontology learning.

The core crowdsourcing tasks above have been used by several approaches
and across diverse stages of ontology engineering, thus being of interest in a wide
range of ontology engineering scenarios. As such, they guided the development
of our plugin, which currently supports tasks T2, T4, and partially T3.

3 The uComp Protégé Plugin

In order to support ontology engineers to easily and flexibly integrate crowd-
sourcing tasks within their work, we implemented a plugin in Protégé, one of
the most widely used ontology editors. The typical workflow of using the plugin
involves the following main stages (as also depicted in Figure 1).

1. Specify 2.5end
Task Request
4“<€pmtégé) " U'Comp
Z 5. Result 3. Create and
Gmology &1 4. Crowd i
ntp ogy . Interpret .Crow Crowdsourcing
Engineer Result Results
Tasks

¢ CrowdFlower GWAPs

Crowd
Workers

Fig. 1. Main stages when using the uComp plugin

1. Task Specification. An ontology engineer using Protégé can invoke the
functionalities of the plugin from within the ontology editor at any time
within his current work. The plugin allows specifying some well defined on-
tology engineering tasks, such as those discussed in Section 3.2 above. The
view of the plugin that is appropriate for the task at hand is added to the
editor’s user interface via the Window — Views menu. The ontology engi-
neer then specifies the part of the ontology to verify (eg. a specific class or

186 F. Hanika, G. Wohlgenannt, and M. Sabou

all classes in the ontology), provides additional information and options in
the plugin view and then starts the evaluation. Crowdsourced tasks can be
canceled (or paused) anytime during the crowdsourcing process. We further
detail the plugin’s functionality in Section 3.1.

2. Task Request. The plugin uses the uComp API' to request the processing
of the task by the crowd.

3. Creation of Crowdsourcing Tasks. The crowdsourcing process happens
through the uComp platform?, a hybrid-genre crowdsourcing platform which
facilitates various knowledge acquisition tasks by flexibly allocating the re-
ceived tasks to GWAPs and/or mechanised labour platforms alike (in par-
ticular, CrowdFlower) [14] depending on user settings.

4. Collection of Crowd Results. The uComp platform collects crowd-work
harvested by individual genres (GWAPs and micro-task crowdsourcing).

5. Combination of Crowd Results. When all crowdsourcing tasks of a job
have completed, the platform combines the results and provides them to the
plugin.

6. Result Presentation and Interpretation. As soon as available, the plu-
gin presents the results to the ontology engineer and saves them in the ontol-
ogy. All data collected by the plugin is stored in the ontology in rdfs: comment
fields, for example information about the ontology domain, the crowdsourc-
ing job ID, and the crowd-created results. Depending on the result, the
ontology engineer will perform further actions such as deleting parts of the
ontology which have been validated as non-relevant.

3.1 Plugin Functionality
The plugin provides a set of views for crowdsourcing the following tasks:

— Verification of Domain Relevance (T4)

— Verification of Relation Correctness - Subsumption (T2)

— Verification of Relation Correctness - InstanceOf (T2) - the verification of
instanceOf relations between an individual and a class.

— Specification of Relation Type (T3) is a Protégé view component that collects
suggestions for labeling unlabeled relations by assigning to them a relation
type from a set of relation types specified by the ontology engineer.

— Verification of Domain and Range where crowd-workers validate whether a
property’s domain and range axioms are correct.

In this paper we focus on the first two functionalities, which we now describe
in more detail.

Verification of Domain Relevance (T4) is supported by the “uComp
Class Validation” view of the plugin and crowdsources the decision of whether
a concept (class) is relevant for a domain. Figure 2 shows the screenshot of this
view for the class “carbon” before initiating the verification. The plugin view’s
interface contains the following information:

! http://tinyurl. com/uCompAPI
2 The platform is being developed in the uComp project (http://www.ucomp.eu/)

http://tinyurl.com/uCompAPI
http://www.ucomp.eu/

Crowdsourcing Enabled Ontology Engineering 187

Class hierarchy {inferrs r Annctatio
s

Class hierarchy

Class Validation |

Concept to be validated: carbon

“alidate relevance for domain: |C|imate Change |

Additional information for validators: |Y0u can check any external resources if needed|

@ Send to CrowdFlower) Send to uComp-Quiz

[¥] validate subtree | CALCULATE cosTs | | co |

iExpected total costs of this job are $0.30. |ﬂ

Fig. 2. The interface of the uComp Class Validation view used to create a Verification
of Domain Relevance (T4) task

Task Specific Information such as the concept selected by the user for vali-
dation. This part of the view is diverse among different plugin functionalities.

Generic information such as the domain of the ontology, i.e., the field of
knowledge which the ontology covers, is present in all views of the plugin. If
entered once, the domain will be stored in the ontology (as rdfs:comment)
and be pre-filled subsequently, but it can also be changed at any time.

Additional information For every task, the plugin contains a predefined task
description (typically including examples) which is presented to the crowd-
worker. If the ontology engineer wants to extend this task description, (s)he
can provide more guidelines in the additional information field. This func-
tionality is present in all the views of the plugin.

Recursive control allows performing a task (e.g., domain relevance validation)
not only for the current class, but for a larger part of or even the entire
ontology. If the Validate subtree option is selected, the plugin crowdsources
the specified task for the current concept and all its subconcepts recursively.
To apply the functionality to the entire ontology, the plugin is invoked from
the uppermost class, i.e., (Thing).

GO button to start the crowdsourcing process.

Verification of Relation Correctness - Subsumption (T2). is achieved
with the uComp SubClass Validation. When selecting a class in Protégé, the
plugin automatically detects its superclasses (if any) and fills the boxes in the
plugin UL As with any plugin functionality, the elements of the user interface are
described in the plugin documentation, and additional information is also given
interactively as mouse-over overlays. As soon as results are available these are
presented in the Ul, as shown in Figure 3. The screenshot gives an example with
one evaluator, who rated the IS-A relation between “education” and “business”
as invalid. If the majority of judgements is negative, a button to remove the
relation is displayed.

188 F. Hanika, G. Wohlgenannt, and M. Sabou

shlerar(hylmf!nedl [Annotati

| uCamp Subelass Validation |

In the domain of: Finance
Is class: education
=@ banking a subclass of the superclassies): business
- ®bond
P busmess o ; :)
. INEHGESEEh Additional information for validators:
ion
rate b
‘sector e
target [[] cancel subtree CANCEL
=@ climate
company Walidating subclass "education" against superclassies) "business" in the domain of "Finance" with aq*
consumer Results from uComp quiz for superclass "business": Yes: 0, No: 1, | don't know: 0
‘country uComp Validation NEGATIVE! The subclass "education" is not relevant for the superclass "business"l[+
crisis Lo]) [[»]
s currency
Q sbt,. | REMOVE ALL NEGATIVE RELATIONS |
deflation

Fig. 3. Screenshot showing the interface for subClassOf relation validation, including
the display of results

3.2 Crowdsourcing Task Interfaces

Upon receiving the request from the Protégé plugin, the uComp API selects the
appropriate crowdsourcing genre and creates the relevant crowd-jobs. Currently
the platform can crowdsource tasks either to GWAPs such as Climate Quiz [16]
or to CrowdFlower, with a hybrid-genre strategy currently being developed. In
this paper, we test the plugin by crowdsourcing only through CrowdFlower.

Figure 4 depicts the crowdsourcing interfaces created automatically by the
uComp platform for the two tasks discussed above, namely the verification of
domain relevance (part a) and the validation of subsumption relations (part b) .
The uComp platform requires only the task data from the Protégé plugin and it
provides relevant instructions as well as gold units to all tasks. Additionally, each
crowdsourcing interface is extended with straightforward verification questions
(i.e., typing some letters of the input terms). It has been shown experimentally
(e.g. [6,8]), that extending task interfaces with explicitly verifiable questions
forces workers to process the content of the task and also signals to them that
their answers are being scrutinized.

To ensure a good quality output, by default all created jobs are assigned
to Level 3 CrowdFlower contributors which are the contributors delivering, on
average, the highest quality work. Also, for the moment we assume that the
verified ontologies will be in English and therefore we restrict contributors to
the main English speaking countries: Australia, United Kingdom and United
States. In each created job we present 5 units per page and for each unit we
collect 5 individual judgements. A price per task of $0.05 was specified for all
jobs. A task is complete when all requested judgments have been collected.

The plugin is available from Protégé’s central registry as the uComp Crowd-
sourcing Validation plugin. The plugin has been tested with Protégé versions
4.2 and 4.3, as well as the recent version 5.0 (beta). A local configuration file

Crowdsourcing Enabled Ontology Engineering 189

Check word relevance for adomain Verify that a term is more specific than another
Is the concept reduction relevant for the domain Climate Change? In the domain of Climate Change: Is class study a subclass of science?
O Yes O Ye
O No (6] Neos
‘What is the last letter of the current concept? Which is the second letter of the first term?
(a) (b)

Fig. 4. Generated CrowdFlower job interface for (a) the Verification of Domain Rele-
vance (T4) and (b) the Verification of Relation Correctness (T2) tasks

contains the uComp-API key® and various adaptable settings (e.g., judgements
per unit, price per unit).

4 Evaluation

We evaluate the Plugin in the context of an ontology learning scenario as de-
scribed in the introduction because i) bootstrapping ontology engineering by
extracting an initial ontology automatically is a feasible and frequent ontology
engineering approach and ii) automatically generated ontologies present errors
that are best solved through human intervention. After the verification step with
the uComp plugin, the resulting ontologies are used as part of a media monitor-
ing tool* with the purpose of visualising information extracted from text corpora
in a way that is meaningful to the web (i.e., non-specialised) audience. There-
fore, agreement on the elements of these ontologies by the general public is, in
this particular use case scenario, very important.

The goal of the evaluation is to assess the improvements that the uComp Plu-
gin could enable in an ontology engineering scenario in terms of typical project
completion aspects such as time, cost and quality of output. Concretely, the
evaluation goals can be summarised into the following questions:

Time. How does the use of the plugin affect the time needed to perform ontol-
ogy engineering tasks? We distinguish the total task time (7};) as the time
taken from the start of the ontology engineering task until its finalisation;
and the time of the ontology engineer spent actively in the task (T,e). In a
crowdsourced scenario, T,. < T}, because the ontology engineer is only ac-
tively working during the outsourcing of the task. In contrast, in a traditional
scenario T,e = Ty.

Cost. Are there cost benefits associated with the use of the plugin? We compute
costs related to payments for the involved work-force, that is payments to
ontology experts (C,.) and payments to crowd-workers (C.;). Ontology engi-
neer costs are computed by multiplying the time they spend on the task (T.)

3 Request a key from the uComp team, see http://tinyurl.com/uCompAPI
4 http://www.ecoresearch.net/climate/

http://tinyurl.com/uCompAPI
http://www.ecoresearch.net/climate/

190 F. Hanika, G. Wohlgenannt, and M. Sabou

with an average monthly wage. To allow comparison to other studies [11],
the wage of a research scientist was assumed to be $54,000 per annum.
Quality. What are the implications on the quality of the resulting output when
using the Plugin? Several studies have shown that the quality of various
knowledge acquisition tasks performed by crowd-workers is, in general, simi-
lar to (or even better than) the quality of tasks performed by ontology engi-
neers [19,10,13]. While the quality of the obtained data is not the core focus
of our evaluation, we expect to obtain similar results to previous studies.

Usability. Is the plugin usable? As any end-user tool, the plugin should be easy
to understand and use by the average ontology engineer already familiar with
the Protégé environment.

4.1 Evaluation Setup

The setup involves a group of 8 ontology engineers which perform the same tasks
over the same datasets but using two different approaches. In the first setting
(S-Manual), all ontology engineers used the traditional (that is manual) approach
to perform the ontology engineering tasks. In the second setting (S_Crowd), four
of the eight ontology engineers used the Plugin to crowdsource (that is, create
and launch) the same ontology engineering tasks, after being given a brief tutorial
about the plugin (30 minutes). The two settings were then compared along the
time, cost and quality dimensions. Time was measured as number of minutes
to complete the task. Regarding the evaluators, four were experienced Protégé
users, the other four work in the Semantic Web area but have limited knowledge
of Protégé and were shortly trained in Protégé. None of the ontology engineers
involved had any strong expertise in a particular domain.

Evaluation Data. The input to all evaluation tasks are ontologies generated
by the ontology learning algorithm described in [22] (primarily) from textual
sources. We evaluate the plugin over two ontologies covering two diverse domains
(climate change and finance). We chose a general knowledge domain (finance)
and a domain which requires domain familiarity or interest (climate change).
More specialised domains will be evaluated as future research, but earlier work
has already [10] investigated crowd-worker performance across ontologies of dif-
ferent domains/generality. The ontologies tested are of small to medium size,
large ontologies would have made the manual evaluation stage unfeasible. The
Climate Change ontology has 101 classes and 61 relations (out of which 43 are
taxonomic relations) while the Finance ontology has 77 classes and 50 relations
(20 of which are taxonomic relations). The ontologies were used as generated.
The ontologies used in the evaluation process, the instructions given to the man-
ual evaluators, and the results, are found online®.

5 http://tinyurl.com/ucomp

http://tinyurl.com/ucomp

Crowdsourcing Enabled Ontology Engineering 191

Evaluation Tasks. We perform the evaluation of the plugin over two different
ontology engineering tasks in order to 1) test different functionalities of the
plugin; and 2) obtain evaluation results over a range of tasks. These tasks are:

T_DomRel :Verification of Domain Relevance (T4). For each concept of
the ontology decide whether it is relevant for the domain in question (in
our case, climate change and finance). In S_Manual, evaluators were asked
to perform this task by assigning True/False values to a class level annota-
tion property that we created for the purposes of our experiments (named
uComp_class_relevance).

T_SubsCorr: Verification of Relation Correctness — Subsumption (T2).
For all subsumption relations in the ontology evaluators verified whether
they were correct. In S_Manual, evaluators recorded their judgements in an
annotation property at the relation level created for the purpose of the ex-
periments (uComp_subclassof _check).

4.2 Evaluation Results

Task Duration. Table 2 lists the task duration for the two ontologies and
the two settings, detailed in terms of the average time intervals spent by the
ontology engineer (T,.), by using crowdsourcing (Ts) and the total time of the
task (Tyt = Toe + Tes). In the case of S_Crowd, the time needed for the ontology
engineers to create and launch the crowdsourcing task was on average between
1 and 2 minutes. To simplify calculations, we chose to take the average time
as 2 minutes across all tasks. We notice that the time reduction ratio for the
ontology engineer across the two settings (computed as the ratio of the ontology
engineering time in Setting 1 and Setting 2) is significant and ranges from a
13.7 fold reduction to a 7.5 fold reduction, with an overall average of 11: thus
ontology engineers need to spend 11 times less time on the task when using the
Plugin than in the manual scenario. The duration of the overall task increases
and varies between 2.4 and 4.7 hours. Note however, that the current evaluation
setup maximizes quality rather than speed. Faster completion rates (possibly
at the expense of data quality) could have been obtained by not restricting the
geographical location and previous achievements of the crowd-workers.

Table 2. Task duration in minutes per ontology, evaluation task and setting

Climate Change Finance
Ontology Ontology
T_DomRel |T_SubsCorr| T_DomRel |T_SubsCorr
Toe Tcs Ttt Toe Tcs Ttt Toe Tcs Ttt Toe Tcs Ttt
S_Manual (Avg) [27.4| 0 [27.4/23.0| 0 [23.0]21.3| 0 |21.3|15.0| 0 |15.0
S_Manual (StdDev)| 5 [0 | 5 |62 062|710 |7.1|56]|0 5.6
S_Crowd (Avg) 2 (240({242| 2 |[280]282 | 2 |140|{142| 2 (200|202
S_Manual/S_Crowd|13.7| - [0.11{12.5| - [0.08{10.65| - |0.15| 7.5 | - |0.07

192 F. Hanika, G. Wohlgenannt, and M. Sabou

Costs. For the cost analysis, we compute average costs for the total task (Ci)
as the sum of the average cost of the ontology engineer (C,e) and the average
cost of the crowd-sourced tasks (C.s) as detailed in Table 3. Considering an
annual salary of $54,000 and a corresponding $26 hourly wageS, average ontology
engineering costs were computed based on the average times shown in Table 2.
Cost savings were then computed for each cost category.

Table 3. Average costs (in $) for the ontology engineer (Coe), crowd-workers (Cles)
and the entire task (Ct:) across ontologies and settings

Climate Change Finance
Ontology Ontology
T_DomRel |T_SubsCorr| T_DomRel | T_SubsCorr
Coe Ccs Ctt Coe Ccs Ctt Coe Ccs Ctt Coe Ccs Ctt

S_Manual (Avg) 11.9] 0 [11.9199| 0 [99]9.2| 0 92| 65| 0 [6.5
S_Crowd (Avg) 0.9 |8.48(9.38| 0.9 [3.58(4.48| 0.9 |6.49|7.39| 0.9 |1.67|2.57
Cost Savings (%) [92.4| - [21.2]{90.1| - [54.7]90.2| - |19.7|86.15| - [60.5
S_CrowdCheap (Avg)|0.9[1.02|2.1{0.9 |0.43|1.33[0.9 |0.78]/1.68| 0.9 | 0.2 | 1.1
Cost Savings (%) [92.4| - [82.3(90.1| - |86.5[90.2| - |81.7|86.15| - | 83

Ontology engineer cost savings are high and range from 92.4% to 86.15%,
averaged at 89.9%. For the entire task, cost savings are moderate (19.7% - 60.5%,
Avg = 39%), with Setting 2 reducing S_Manual costs with 40%. Note, however,
that task level cost savings will ultimately depend on the cost that ontology
engineers decide to pay to crowd-workers. For example, choosing a cheaper task
setting than currently (i.e., 3 judgements, with $0.01 per task vs. the current 5
judgements and $0.05 per task) will lead to average cost savings of 83.3% for the
total task (S_CrowdCheap in Table 3). From the plugin’s perspective, the major
goal is reducing ontology engineering costs, as crowdsourcing costs will depend
on the constraints of the ontology engineer and are hard to generalise.

Data Quality. Lower completion times and costs should not have a nega-
tive effect on the quality of the crowdsourced data. Since we do not possess a
baseline for either of the two tasks, we will perform a comparative evaluation
and contrast inter-rater agreement levels between ontology engineers with those
of crowdworkers. We have measured inter-rater agreement with Fleiss’ Kappa
which is used to assess reliability of agreement with a fixed number of raters and
categorical ratings assigned to a number of items.

Table 4 presents inter-rater agreement per task and per setting, with the
number of raters per task given in parentheses. According to the interpretation
of Landis and Koch [7] the inter-rater agreement among manual expert eval-
uators (S_-Manual) is moderate. Agreement among the four groups of Crowd-
Flower workers is substantial (S_Crowd). The combined agreement (manual ex-

5 In practice, considering benefits, overhead and vacation, the actual costs for a pro-
ductive hour are likely to be higher than $26. Nevertheless, we decided to keep $26
in order to be able to compare our findings to similar studies.

Crowdsourcing Enabled Ontology Engineering 193

Table 4. Fleiss’ Kappa values of inter-rater agreement per setting and when combining
the data of the two settings

Climate Change Finance
Ontology Ontology
T_DomRel|T_SubsCorr|T_DomRel|T_SubsCorr
S_Manual 0.338 (8) 0.502 (8) 0.496 (8) 0.419 (8)
S_Crowd 0.633 (4) 0.841 (4) 0.520 (4) 0.826 (4)
S_ManualCrowd| 0.392 (12) | 0.582 (12) | 0.505 (12) | 0.508 (12)

pert and crowdworkers) is always higher than for manual evaluators alone. A
detailed inspection of results reveals that judgement is difficult on some ques-
tions, for example relevance of given concepts for the climate change domain
often depends on the point of view and granularity of the domain model. But
in general, crowdworkers have a higher inter-rater agreement, which often cor-
responds with the majority opinion of manual experts, thereby raising Fleiss’
kappa (S_ManualCrowd). Also, the agreement between the crowd and experts is
higher than among experts, possibly because crowdsourcing data is the majority
view derived from 5 judgements as compared to a single expert judgement.

Plugin Usability was assessed by means of the System Usability Scale
(SUS), the most used questionnaire for measuring perceptions of usability [2].
Based on data collected from the entire test population (i.e., all 8 ontology engi-
neers), we obtained a SUS score of 85, which corresponds to the 90th percentile
rank and positions the plugin in the class of “A” type system, that is systems
with maximal usability. All evaluators agreed that (a) they would prefer using
the plugin instead of performing the tasks manually and that (b) the use of the
plugin saved a lot of their time. They considered the recursive task verification
particularly useful when focusing on large (parts of the) ontologies. One sug-
gested making the plugin data and results more visually appealing, and showing
the anticipated cost before crowdsourcing — both of which have been imple-
mented in the meantime. Given the small scale of the usability evaluation, we
consider it only as indicative that the Plugin has a good usability.

5 Summary and Future Work

In this paper we investigated the idea of closely embedding crowdsourcing tech-
niques into ontology engineering. Through an analysis of previous works using
crowdsourcing for ontology engineering, we concluded that a set of basic crowd-
sourcing tasks are repeatedly used to achieve a range of ontology engineering
processes across various stages of the ontology life-cycle. We then presented a
novel tool, a Protégé plugin, that allows ontology engineers to use these basic
crowdsourcing tasks from within their ontology engineering working context in
Protégé. An evaluation of the plugin in an ontology engineering scenario where
automatically learned ontologies in two different domains are assessed for do-
main relevance and subsumption correctness, revealed that the use of the plugin

194 F. Hanika, G. Wohlgenannt, and M. Sabou

reduced overall project costs, lowered the time spent by the ontology engineer
(without extending the time of the overall tasks to over 4 hours) and returned
good quality data that was in high agreement with ontology engineers. Finally,
our evaluators have provided positive feedback about the usability of the plugin.

Our evaluation focused on assessing the concept of a crowdsourcing plugin.
Although we plan to make use of the uComp platform, this particular evaluation
forwarded all tasks directly to CrowdFlower and therefore is not influenced by
the particularities of the uComp framework. As a first evaluation of the plugin,
we focused on small-scale ontologies and therefore cannot offer insights, at this
stage, about how the plugin scales to large-scale ontologies. Another important
question to address is whether crowd-workers can replace domain experts for
application scenarios where domain specific meaning must be conveyed by the
domain models. Both of these issues are important for our future work.

We consider our work as a first step towards the wide adoption of crowd-
sourcing by the ontology engineering community, and therefore, we see ample
opportunities for future work. Firstly, since the use of crowdsourcing has ma-
tured enough, it is a good time to move on from isolated approaches towards a
methodology of where and how crowdsourcing can efficiently support ontology
engineers. Such methodological guidelines should inform tools such as our own
plugin while our plugin could offer a means to build and test these guidelines.
Secondly, in terms of the plugin development, we plan further extending its func-
tionality (1) to support additional HC tasks; (2) to allow greater control over
job settings as well as (3) to permit monitoring of the results as they become
available from within Protégé. Thirdly, the scalability of the proposed approach
remains to be investigated - while the current evaluation did not focus on this
aspect, we expect that the automatic distribution of tasks for parallel processing
will make this approach feasible for dealing with large ontologies as well. We
also plan to evaluate the plugin in other ontology engineering scenarios (e.g.,
ontology matching) and to conduct larger scale usability studies. Future work
will also reveal best use cases of the plugin identifying those cases when it can
be used to collect generic knowledge as opposed to application areas where it
should be used to support the work of a distributed group of domain experts.

Acknowledgments. The work presented in this paper was developed within
project uComp, which receives the funding support of EPSRC EP/K017896/1,
FWF 1097-N23, and ANR-12-CHRI-0003-03, in the framework of the CHIST-
ERA ERA-NET.

References

1. Bontcheva, K., Roberts, 1., Derczynski, L., Rout, D.: The GATE Crowdsourcing
Plugin: Crowdsourcing Annotated Corpora Made Easy. In: Proc. of the 14th Con-
ference of the European Chapter of the Association for Computational Linguistics
(EACL). ACL (2014)

2. Brooke, J.: SUS: a quick and dirty usability scale. Taylor & Francis, London (1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Crowdsourcing Enabled Ontology Engineering 195

Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: ZenCrowd: Leveraging Proba-
bilistic Reasoning and Crowdsourcing Techniques for Large-scale Entity Linking.
In: Proceedings of the 21st International Conference on World Wide Web, pp.
469-478. ACM (2012)

Eckert, K., Niepert, M., Niemann, C., Buckner, C., Allen, C., Stuckenschmidt, H.:
Crowdsourcing the Assembly of Concept Hierarchies. In: Proc. of the 10th Annual
Joint Conference on Digital Libraries, JCDL 2010, pp. 139-148. ACM (2010)
Howe, J.: Crowdsourcing: Why the Power of the Crowd is Driving the Future of
Business (2009), http://crowdsourcing.typepad. com/

Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing User Studies with Mechanical Turk.
In: Proc. of the 26th Conference on Human Factors in Computing Systems, pp.
453-456 (2008)

Landis, J., Koch, G.: The measurement of observer agreement for categorical data.
Biometrics 33(1), 159-174 (1977)

Laws, F., Scheible, C., Schiitze, H.: Active Learning with Amazon Mechanical Turk.
In: Proc. of the Conf. on Empirical Methods in NLP, pp. 1546-1556 (2011)
Markotschi, T., Volker, J.: Guess What?! Human Intelligence for Mining Linked
Data. In: Proc. of the Workshop on Knowledge Injection into and Extraction
from Linked Data at the International Conference on Knowledge Engineering and
Knowledge Management, EKAW-2010 (2010)

Noy, N.F., Mortensen, J., Musen, M.A., Alexander, P.R.: Mechanical Turk As an
Ontology Engineer?: Using Microtasks As a Component of an Ontology-engineering
Workflow. In: Proceedings of the 5th Annual ACM Web Science Conference, Web-
Sci 2013, pp. 262-271. ACM (2013)

Poesio, M., Kruschwitz, U., Chamberlain, J., Robaldo, L., Ducceschi, L.: Phrase
Detectives: Utilizing Collective Intelligence for Internet-Scale Language Resource
Creation. Transactions on Interactive Intelligent Systems 3(1), 1-44 (2013)
Sabou, M., Bontcheva, K., Scharl, A.: Crowdsourcing Research Opportunities:
Lessons from Natural Language Processing. In: Proc. of the 12th International
Conference on Knowledge Management and Knowledge Technologies (iIKNOW).
Special Track on Research 2.0 (2012)

Sabou, M., Bontcheva, K., Scharl, A., Fols, M.: Games with a Purpose or Mecha-
nised Labour?: A Comparative Study. In: Proc. of the 13th International Confer-
ence on Knowledge Management and Knowledge Technologies, i-Know 2013, pp.
1-8. ACM (2013)

Sabou, M., Scharl, A., Fols, M.: Crowdsourced Knowledge Acquisition: Towards
Hybrid-genre Workflows. International Journal of Semantic Web and Information
Systems 9(3), 14-41 (2013)

Sarasua, C., Simperl, E., Noy, N.F.: CRowDMAP: Crowdsourcing Ontology Align-
ment with Microtasks. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I.
LNCS, vol. 7649, pp. 525-541. Springer, Heidelberg (2012)

Scharl, A., Sabou, M., Féls, M.: Climate Quiz: a Web Application for Eliciting and
Validating Knowledge from Social Networks. In: Proceedings of the 18th Brazilian
Symposium on Multimedia and the Web, WebMedia 2012, pp. 189-192. ACM
(2012)

Siorpaes, K., Hepp, M.: Games with a Purpose for the Semantic Web. IEEE Intel-
ligent Systems 23(3), 50-60 (2008)

Thaler, S., Simperl, E., Siorpaes, K.: SpotTheLink: Playful Alignment of Ontolo-
gies. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp.
1711-1712. ACM (2011)

http://crowdsourcing.typepad.com/

196

19.

20.

21.

22.

23.

F. Hanika, G. Wohlgenannt, and M. Sabou

Thaler, S., Simperl, E., Wolger, S.: An Experiment in Comparing Human-
Computation Techniques. IEEE Internet Computing 16(5), 52-58 (2012)

von Ahn, L., Dabbish, L.: Designing games with a purpose. ACM Commun. 51(8),
58-67 (2008)

Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: WhoKnows? Evaluating Linked
Data Heuristics with a Quiz that Cleans Up DBpedia. Interact. Techn. Smart
Edu. 8(4), 236-248 (2011)

Wohlgenannt, G., Weichselbraun, A.; Scharl, A., Sabou, M.: Dynamic Integration
of Multiple Evidence Sources for Ontology Learning. Journal of Information and
Data Management 3(3), 243-254 (2012)

Wolf, L., Knuth, M., Osterhoff, J., Sack, H.: RISQ! Renowned Individuals Seman-
tic Quiz - a Jeopardy like Quiz Game for Ranking Facts. In: Proc. of the 7th
International Conference on Semantic Systems, I-Semantics 2011, pp. 71-78. ACM
(2011)

	The uComp Protégé Plugin: Crowdsourcing Enabled Ontology Engineering
	Introduction
	Use of Crowdsourcing for Knowledge Acquisition
	Typical Crowdsourcing Tasks in Ontology Engineering

	The uComp Protégé Plugin
	Plugin Functionality
	Crowdsourcing Task Interfaces

	Evaluation
	Evaluation Setup
	Evaluation Data.
	Evaluation Tasks.

	Evaluation Results

	Summary and Future Work

